面试时 Redis 内存淘汰总被问,但是总答不好,怎么解决?

  |   0浏览

什么是内存淘汰

内存淘汰,和平时我们设置redis key的过期时间,不是一回事;内存淘汰是说,假设我们限定redis只能使用8g内存,现在已经使用了这么多了(包括设置了过期时间的key和没设过期时间的key),那,后续的set操作,还怎么办呢?

是不是只能报错了?

那不行啊,不科学吧,因为有的key,可能已经很久没人用了,可能以后也不会再用到了,那我们是不是可以把这类key给干掉呢?

干掉key的过程,就是内存淘汰。

内存淘汰什么时候启用

当我们在配置文件里设置了如下属性时:

# maxmemory <bytes>

默认,该属性是被注释掉的。

其实,这个配置项的注释,相当有价值,我们来看看:

# Don't use more memory than the specified amount of bytes.# When the memory limit is reached Redis will try to remove keys# according to the eviction policy selected (see maxmemory-policy).## If Redis can't remove keys according to the policy, or if the policy is# set to 'noeviction', Redis will start to reply with errors to commands# that would use more memory, like SET, LPUSH, and so on, and will continue# to reply to read-only commands like GET.## This option is usually useful when using Redis as an LRU cache, or to set# a hard memory limit for an instance (using the 'noeviction' policy).## WARNING: If you have slaves attached to an instance with maxmemory on,# the size of the output buffers needed to feed the slaves are subtracted# from the used memory count, so that network problems / resyncs will# not trigger a loop where keys are evicted, and in turn the output# buffer of slaves is full with DELs of keys evicted triggering the deletion# of more keys, and so forth until the database is completely emptied.## In short... if you have slaves attached it is suggested that you set a lower# limit for maxmemory so that there is some free RAM on the system for slave# output buffers (but this is not needed if the policy is 'noeviction').## maxmemory <bytes>

渣翻译如下:

不能使用超过指定数量bytes的内存。当该内存限制被达到时,redis会根据过期策略(eviction policy,通过参数 maxmemory-policy来指定)来驱逐key。

如果redis根据指定的策略,或者策略被设置为“noeviction”,redis会开始针对如下这种命令,回复错误。什么命令呢?会使用更多内存的那类命令,比如set、lpush;只读命令还是不受影响,可以正常响应。

该选项通常在redis使用LRU缓存时有用,或者在使用noeviction策略时,设置一个进程级别的内存limit。

内存淘汰策略

所谓策略,意思是,当我们要删除部分key的时候,删哪些,不删哪些?是不是需要一个策略?比如是随机删,就像灭霸一样?还是按照lru时间来删,lru的策略意思就是,最近最少使用的key,将被优先删除。

总之,我们需要定一个规则。

redis默认支持以下策略:

# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory# is reached. You can select among five behaviors:# # volatile-lru -> remove the key with an expire set using an LRU algorithm# allkeys-lru -> remove any key accordingly to the LRU algorithm# volatile-random -> remove a random key with an expire set# allkeys-random -> remove a random key, any key# volatile-ttl -> remove the key with the nearest expire time (minor TTL)# noeviction -> don't expire at all, just return an error on write operations# # Note: with any of the above policies, Redis will return an error on write#       operations, when there are not suitable keys for eviction.##       At the date of writing this commands are: set setnx setex append#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby#       getset mset msetnx exec sort## The default is:## maxmemory-policy noevictionmaxmemory-policy allkeys-lru
针对设置了过期时间的,使用lru算法# volatile-lru -> remove the key with an expire set using an LRU algorithm针对全部key,使用lru算法# allkeys-lru -> remove any key accordingly to the LRU algorithm针对设置了过期时间的,随机删# volatile-random -> remove a random key with an expire set针对全部key,随机删# allkeys-random -> remove a random key, any key针对设置了过期时间的,马上要过期的,删掉# volatile-ttl -> remove the key with the nearest expire time (minor TTL)不过期,不能写了,就报错# noeviction -> don't expire at all, just return an error on write operations

源码实现

配置读取

在如下结构体中,定义了如下字段:

struct redisServer {    ...    unsigned long long maxmemory;   /* Max number of memory bytes to use */    int maxmemory_policy;           /* Policy for key eviction */    int maxmemory_samples;          /* Pricision of random sampling */    ...}

当我们在配置文件中,进入如下配置时,该结构体中几个字段的值如下:

maxmemory 3mbmaxmemory-policy allkeys-lru# maxmemory-samples 5  这个取了默认值

面试时 Redis 内存淘汰总被问,但是总答不好,怎么解决?

maxmemory_policy为3,是因为枚举值为3:

#define REDIS_MAXMEMORY_VOLATILE_LRU 0#define REDIS_MAXMEMORY_VOLATILE_TTL 1#define REDIS_MAXMEMORY_VOLATILE_RANDOM 2#define REDIS_MAXMEMORY_ALLKEYS_LRU 3#define REDIS_MAXMEMORY_ALLKEYS_RANDOM 4#define REDIS_MAXMEMORY_NO_EVICTION 5#define REDIS_DEFAULT_MAXMEMORY_POLICY REDIS_MAXMEMORY_NO_EVICTION

处理命令时,判断是否进行内存淘汰

在处理命令的时候,会调用中的

redis.c  processCommandint processCommand(redisClient *c) {    /* The QUIT command is handled separately. Normal command procs will     * go through checking for replication and QUIT will cause trouble     * when FORCE_REPLICATION is enabled and would be implemented in     * a regular command proc. */    // 特别处理 quit 命令    void *commandName = c->argv[0]->ptr;    redisLog(REDIS_NOTICE, 'The server is now processing %s', commandName);    if (!strcasecmp(c->argv[0]->ptr, 'quit')) {        addReply(c, shared.ok);        c->flags |= REDIS_CLOSE_AFTER_REPLY;        return REDIS_ERR;    }    /* Now lookup the command and check ASAP about trivial error conditions     * such as wrong arity, bad command name and so forth. */    // 1 查找命令,并进行命令合法性检查,以及命令参数个数检查    c->cmd = c->lastcmd = lookupCommand(c->argv[0]->ptr);    if (!c->cmd) {        // 没找到指定的命令        flagTransaction(c);        addReplyErrorFormat(c, 'unknown command '%s'',                            (char *) c->argv[0]->ptr);        return REDIS_OK;    }    /* Check if the user is authenticated */    //2 检查认证信息    if (server.requirepass && !c->authenticated && c->cmd->proc != authCommand) {        flagTransaction(c);        addReply(c, shared.noautherr);        return REDIS_OK;    }    /* If cluster is enabled perform the cluster redirection here.     *     * 3 如果开启了集群模式,那么在这里进行转向操作。     *     * However we don't perform the redirection if:     *     * 不过,如果有以下情况出现,那么节点不进行转向:     *     * 1) The sender of this command is our master.     *    命令的发送者是本节点的主节点     *     * 2) The command has no key arguments.      *    命令没有 key 参数     */    if (server.cluster_enabled &&        !(c->flags & REDIS_MASTER) &&        !(c->cmd->getkeys_proc == NULL && c->cmd->firstkey == 0)) {        int hashslot;        // 集群已下线        if (server.cluster->state != REDIS_CLUSTER_OK) {            flagTransaction(c);            addReplySds(c, sdsnew('-CLUSTERDOWN The cluster is down. Use CLUSTER INFO for more informationrn'));            return REDIS_OK;            // 集群运作正常        } else {            int error_code;            clusterNode *n = getNodeByQuery(c, c->cmd, c->argv, c->argc, &hashslot, &error_code);            // 不能执行多键处理命令            if (n == NULL) {                flagTransaction(c);                if (error_code == REDIS_CLUSTER_REDIR_CROSS_SLOT) {                    addReplySds(c, sdsnew('-CROSSSLOT Keys in request don't hash to the same slotrn'));                } else if (error_code == REDIS_CLUSTER_REDIR_UNSTABLE) {                    /* The request spawns mutliple keys in the same slot,                     * but the slot is not 'stable' currently as there is                     * a migration or import in progress. */                    addReplySds(c, sdsnew('-TRYAGAIN Multiple keys request during rehashing of slotrn'));                } else {                    redisPanic('getNodeByQuery() unknown error.');                }                return REDIS_OK;                //3.1 命令针对的槽和键不是本节点处理的,进行转向            } else if (n != server.cluster->myself) {                flagTransaction(c);                // -<ASK or MOVED> <slot> <ip>:<port>                // 例如 -ASK 10086 127.0.0.1:12345                addReplySds(c, sdscatprintf(sdsempty(),                                            '-%s %d %s:%drn',                                            (error_code == REDIS_CLUSTER_REDIR_ASK) ? 'ASK' : 'MOVED',                                            hashslot, n->ip, n->port));                return REDIS_OK;            }            // 如果执行到这里,说明键 key 所在的槽由本节点处理            // 或者客户端执行的是无参数命令        }    }    /* Handle the maxmemory directive.     *     * First we try to free some memory if possible (if there are volatile     * keys in the dataset). If there are not the only thing we can do     * is returning an error. */    //4 如果设置了最大内存,那么检查内存是否超过限制,并做相应的操作    if (server.maxmemory) {        //4.1 如果内存已超过限制,那么尝试通过删除过期键来释放内存        int retval = freeMemoryIfNeeded();        // 如果即将要执行的命令可能占用大量内存(REDIS_CMD_DENYOOM)        // 并且前面的内存释放失败的话        // 那么向客户端返回内存错误        if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {            flagTransaction(c);            addReply(c, shared.oomerr);            return REDIS_OK;        }    }        ....
  • 1处,查找命令,对应的函数指针(类似于java里的策略模式,根据命令,找对应的策略)
  • 2处,检查,是否密码正确
  • 3处,集群相关操作;
  • 3.1处,不是本节点处理,直接返回ask,指示客户端转向
  • 4处,判断是否设置了maxMemory,这里就是本文重点:设置了maxMemory时,内存淘汰策略
  • 4.1处,调用了下方的 freeMemoryIfNeeded

接下来,深入4.1处:

int freeMemoryIfNeeded(void) {    size_t mem_used, mem_tofree, mem_freed;    int slaves = listLength(server.slaves);    /* Remove the size of slaves output buffers and AOF buffer from the     * count of used memory. */    // 计算出 Redis 目前占用的内存总数,但有两个方面的内存不会计算在内:    // 1)从服务器的输出缓冲区的内存    // 2)AOF 缓冲区的内存    mem_used = zmalloc_used_memory();    if (slaves) {        ...    }    if (server.aof_state != REDIS_AOF_OFF) {        mem_used -= sdslen(server.aof_buf);        mem_used -= aofRewriteBufferSize();    }    /* Check if we are over the memory limit. */    //1 如果目前使用的内存大小比设置的 maxmemory 要小,那么无须执行进一步操作    if (mem_used <= server.maxmemory) return REDIS_OK;    //2 如果占用内存比 maxmemory 要大,但是 maxmemory 策略为不淘汰,那么直接返回    if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)        return REDIS_ERR; /* We need to free memory, but policy forbids. */    /* Compute how much memory we need to free. */    // 3 计算需要释放多少字节的内存    mem_tofree = mem_used - server.maxmemory;    // 初始化已释放内存的字节数为 0    mem_freed = 0;    // 根据 maxmemory 策略,    //4 遍历字典,释放内存并记录被释放内存的字节数    while (mem_freed < mem_tofree) {        int j, k, keys_freed = 0;        // 遍历所有字典        for (j = 0; j < server.dbnum; j++) {            long bestval = 0; /* just to prevent warning */            sds bestkey = NULL;            dictEntry *de;            redisDb *db = server.db + j;            dict *dict;            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||                server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM) {                // 如果策略是 allkeys-lru 或者 allkeys-random                 //5 那么淘汰的目标为所有数据库键                dict = server.db[j].dict;            } else {                // 如果策略是 volatile-lru 、 volatile-random 或者 volatile-ttl                 //6 那么淘汰的目标为带过期时间的数据库键                dict = server.db[j].expires;            }            /* volatile-random and allkeys-random policy */            // 如果使用的是随机策略,那么从目标字典中随机选出键            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM) {                de = dictGetRandomKey(dict);                bestkey = dictGetKey(de);            }            /* volatile-lru and allkeys-lru policy */            //7             else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||                     server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU) {                struct evictionPoolEntry *pool = db->eviction_pool;                while (bestkey == NULL) {                    // 8                     evictionPoolPopulate(dict, db->dict, db->eviction_pool);                    /* Go backward from best to worst element to evict. */                    for (k = REDIS_EVICTION_POOL_SIZE - 1; k >= 0; k--) {                        if (pool[k].key == NULL) continue;                        // 8.1                        de = dictFind(dict, pool[k].key);                        /* 8.2 Remove the entry from the pool. */                        sdsfree(pool[k].key);                        /* Shift all elements on its right to left. */                        memmove(pool + k, pool + k + 1,                                sizeof(pool[0]) * (REDIS_EVICTION_POOL_SIZE - k - 1));                        /* Clear the element on the right which is empty                         * since we shifted one position to the left.  */                        pool[REDIS_EVICTION_POOL_SIZE - 1].key = NULL;                        pool[REDIS_EVICTION_POOL_SIZE - 1].idle = 0;                        /* If the key exists, is our pick. Otherwise it is                         * a ghost and we need to try the next element. */                        // 8.3                        if (de) {                            bestkey = dictGetKey(de);                            break;                        } else {                            /* Ghost... */                            continue;                        }                    }                }            }                /* volatile-ttl */                // 策略为 volatile-ttl ,从一集 sample 键中选出过期时间距离当前时间最接近的键            else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {                ...            }            /* Finally remove the selected key. */            // 8.4 删除被选中的键            if (bestkey) {                long long delta;                robj *keyobj = createStringObject(bestkey, sdslen(bestkey));                propagateExpire(db, keyobj);                /* We compute the amount of memory freed by dbDelete() alone.                 * It is possible that actually the memory needed to propagate                 * the DEL in AOF and replication link is greater than the one                 * we are freeing removing the key, but we can't account for                 * that otherwise we would never exit the loop.                 *                 * AOF and Output buffer memory will be freed eventually so                 * we only care about memory used by the key space. */                // 计算删除键所释放的内存数量                delta = (long long) zmalloc_used_memory();                dbDelete(db, keyobj);                delta -= (long long) zmalloc_used_memory();                mem_freed += delta;                // 对淘汰键的计数器增一                server.stat_evictedkeys++;                notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, 'evicted',                                    keyobj, db->id);                decrRefCount(keyobj);                keys_freed++;                ...            }        }        if (!keys_freed) return REDIS_ERR; /* nothing to free... */    }    return REDIS_OK;}
  • 1处,如果目前使用的内存大小比设置的 maxmemory 要小,那么无须执行进一步操作

  • 2处,如果占用内存比 maxmemory 要大,但是 maxmemory 策略为不淘汰,那么直接返回

  • 3处,计算需要释放多少字节的内存

  • 4处,遍历字典,释放内存并记录被释放内存的字节数

  • 5处,如果策略是 allkeys-lru 或者 allkeys-random 那么淘汰的目标为所有数据库键

  • 6处,如果策略是 volatile-lru 、 volatile-random 或者 volatile-ttl ,那么淘汰的目标为带过期时间的数据库键

  • 7处,如果使用的是 LRU 策略, 那么从 sample 键中选出 IDLE 时间最长的那个键

  • 8处,调用evictionPoolPopulate,该函数在下面讲解,该函数的功能是,传入一个链表,即这里的db->eviction_pool,然后在函数内部,随机找出n个key,放入传入的链表中,并按照空闲时间排序,空闲最久的,放到最后。

    当该函数,返回后,db->eviction_pool这个链表里就存放了我们要淘汰的key。

  • 8.1处,找到这个key,这个key,在后边会被删除

  • 8.2处,下面这一段,从db->eviction_pool将这个已经处理了的key删掉

  • 8.3处,如果这个key,是存在的,则跳出循环,在后面8.4处,会被删除

  • 8.4处,删除这个key

选择哪些key作为被淘汰的key

前面我们看到,在7处,如果为lru策略,则会进入8处的函数:

evictionPoolPopulate。

该函数的名称为:填充(populate)驱逐(eviction)对象池(pool)。驱逐的意思,就是现在达到了maxmemory,没办法,只能开始删除掉一部分元素,来腾空间了,不然新的put类型的命令,根本没办法执行。

该方法的大概思路是,使用lru的时候,随机找n个key,类似于抽样,然后放到一个链表,根据空闲时间排序。

具体看看该方法的实现:

void evictionPoolPopulate(dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {

其中,传入的第三个参数,是要被填充的对象,在c语言中,习惯传入一个入参,然后在函数内部填充或者修改入参对象的属性。

该属性,就是前面说的那个链表,用来存放收集的随机的元素,该链表中节点的结构如下:

struct evictionPoolEntry {    unsigned long long idle;    /* Object idle time. */    sds key;                    /* Key name. */};

该结构共2个字段,一个存储key,一个存储空闲时间。

该链表中,共maxmemory-samples个元素,会按照idle时间长短排序,idle时间长的在链表尾部,(假设头在左,尾在右)。

void evictionPoolPopulate(dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {    int j, k, count;    dictEntry *_samples[EVICTION_SAMPLES_ARRAY_SIZE];    dictEntry **samples;    /* Try to use a static buffer: this function is a big hit...     * Note: it was actually measured that this helps. */    if (server.maxmemory_samples <= EVICTION_SAMPLES_ARRAY_SIZE) {        samples = _samples;    } else {        samples = zmalloc(sizeof(samples[0]) * server.maxmemory_samples);    }    /* 1 Use bulk get by default. */    count = dictGetRandomKeys(sampledict, samples, server.maxmemory_samples);    // 2    for (j = 0; j < count; j++) {        unsigned long long idle;        sds key;        robj *o;        dictEntry *de;        de = samples[j];        key = dictGetKey(de);        /* If the dictionary we are sampling from is not the main         * dictionary (but the expires one) we need to lookup the key         * again in the key dictionary to obtain the value object. */        if (sampledict != keydict) de = dictFind(keydict, key);        // 3        o = dictGetVal(de);        // 4        idle = estimateObjectIdleTime(o);        /* 5  Insert the element inside the pool.         * First, find the first empty bucket or the first populated         * bucket that has an idle time smaller than our idle time. */        k = 0;        while (k < REDIS_EVICTION_POOL_SIZE &&               pool[k].key &&               pool[k].idle < idle)            k++;        ...        // 6        pool[k].key = sdsdup(key);        pool[k].idle = idle;    }    if (samples != _samples) zfree(samples);}
  • 1处,获取 server.maxmemory_samples个key,这里是随机获取的,(dictGetRandomKeys),这个值,默认值为5,放到samples中

  • 2处,遍历返回来的samples

  • 3处,调用如下宏,获取val

    he的类型为dictEntry:

/* * 哈希表节点 */typedef struct dictEntry {    // 键    void *key;    // 值    union {        // 1        void *val;        uint64_t u64;        int64_t s64;    } v;    // 指向下个哈希表节点,形成链表    struct dictEntry *next;} dictEntry;

所以,这里去

Copyrobj *o; o = dictGetVal(de);

实际就是获取其v属性中的val,(1处):

robj *o; o = dictGetVal(de);
  • 4处,准备计算该val的空闲时间

我们上面3处,看到,获取的o的类型为robj。我们现在看看怎么计算对象的空闲时长:

/* Given an object returns the min number of milliseconds the object was never * requested, using an approximated LRU algorithm. */unsigned long long estimateObjectIdleTime(robj *o) {    //4.1 获取系统的当前时间    unsigned long long lruclock = LRU_CLOCK();    // 4.2    if (lruclock >= o->lru) {        // 4.3        return (lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION;    } else {        return (lruclock + (REDIS_LRU_CLOCK_MAX - o->lru)) *                    REDIS_LRU_CLOCK_RESOLUTION;    }}

这里,4.1处,获取系统的当前时间;

4.2处,如果系统时间,大于对象的lru时间

4.3处,则用系统时间减去对象的lru时间,再乘以单位,换算为毫秒,最终返回的单位,为毫秒(可以看注释。)

#define REDIS_LRU_CLOCK_RESOLUTION 1000 /* LRU clock resolution in ms */
  • 5处,这里拿当前元素,和pool中已经放进去的元素,从第0个开始比较,如果当前元素的idle时长,大于pool中指针0指向的元素,则和pool中索引1的元素比较;直到条件不满足为止。

    这句话意思就是,类似于冒泡,把当前元素一直往后冒,直到idle时长小于被比较的元素为止。

  • 6处,把当前元素放进pool中。

经过上面的处理后,链表中存放了全部的抽样元素,且ide时间最长的,在最右边。

对象还有字段存储空闲时间?

前面4处,说到,用系统的当前时间,减去对象的lru时间。

大家看看对象的结构体

typedef struct redisObject {    // 类型    unsigned type:4;    // 编码    unsigned encoding:4;    //1 对象最后一次被访问的时间    unsigned lru:REDIS_LRU_BITS; /* lru time (relative to server.lruclock) */    // 引用计数    int refcount;    // 指向实际值的指针    void *ptr;} robj;

上面1处,lru属性,就是用来存储这个。

创建对象时,直接使用当前系统时间创建

robj *createObject(int type, void *ptr) {    robj *o = zmalloc(sizeof(*o));    o->type = type;    o->encoding = REDIS_ENCODING_RAW;    o->ptr = ptr;    o->refcount = 1;    /*1 Set the LRU to the current lruclock (minutes resolution). */    o->lru = LRU_CLOCK();    return o;}

1处即是。

robj *createEmbeddedStringObject(char *ptr, size_t len) {    robj *o = zmalloc(sizeof(robj)+sizeof(struct sdshdr)+len+1);    struct sdshdr *sh = (void*)(o+1);    o->type = REDIS_STRING;    o->encoding = REDIS_ENCODING_EMBSTR;    o->ptr = sh+1;    o->refcount = 1;    // 1    o->lru = LRU_CLOCK();    sh->len = len;    sh->free = 0;    if (ptr) {        memcpy(sh->buf,ptr,len);        sh->buf[len] = '0';    } else {        memset(sh->buf,0,len+1);    }    return o;}

1处即是。

每次查找该key时,刷新时间

robj *lookupKey(redisDb *db, robj *key) {    // 查找键空间    dictEntry *de = dictFind(db->dict,key->ptr);    // 节点存在    if (de) {        // 取出值        robj *val = dictGetVal(de);        /* Update the access time for the ageing algorithm.         * Don't do it if we have a saving child, as this will trigger         * a copy on write madness. */        // 更新时间信息(只在不存在子进程时执行,防止破坏 copy-on-write 机制)        if (server.rdb_child_pid == -1 && server.aof_child_pid == -1)            // 1            val->lru = LRU_CLOCK();        // 返回值        return val;    } else {        // 节点不存在        return NULL;    }}

1处即是,包括get、set等各种操作,都会刷新该时间。

仔细看下面的堆栈,set的,get同理:

面试时 Redis 内存淘汰总被问,但是总答不好,怎么解决?

总结

大家有没有更清楚一些呢?

总的来说,就是,设置了max-memory后,达到该内存限制后,会在处理命令时,检查是否要进行内存淘汰;如果要淘汰,则根据maxmemory-policy的策略来。

随机选择maxmemory-sample个元素,按照空闲时间排序,拉链表;挨个挨个清除。

原文地址:https://blog.51cto.com/14230003/2508143